Integrated Structural Dynamics of Calmodulin
نویسندگان
چکیده
منابع مشابه
Impact of methionine oxidation on calmodulin structural dynamics.
We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects id...
متن کاملUnbiased simulation of structural transitions in calmodulin
We introduce an approach for performing “very long” computer simulations of the dynamics of simplified, folded proteins. Using an alpha-carbon protein model and a fine grid to mimic continuum computations at increased speed, we perform unbiased simulations which exhibit many large-scale conformational transitions at low cost. In the case of the 72-residue N-terminal domain of calmodulin, the ap...
متن کاملStructural dynamics of the microtubule binding and regulatory elements in the kinesin-like calmodulin binding protein.
Kinesins are molecular motors that power cell division and transport of various proteins and organelles. Their motor activity is driven by ATP hydrolysis and depends on interactions with microtubule tracks. Essential steps in kinesin movement rely on controlled alternate binding to and detaching from the microtubules. The conformational changes in the kinesin motors induced by nucleotide and mi...
متن کاملStructure and dynamics of calmodulin in solution.
To characterize the dynamic behavior of calmodulin in solution, we have carried out molecular dynamics (MD) simulations of the Ca2+-loaded structure. The crystal structure of calmodulin was placed in a solvent sphere of radius 44 A, and 6 Cl- and 22 Na+ ions were included to neutralize the system and to model a 150 mM salt concentration. The total number of atoms was 32,867. During the 3-ns sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2020
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2019.11.399